Float Point Notation

$$
\pm S\times B^E \\ E=\text{Biased Exponent} - \text{bias}
$$
$B$: Significand (base)
- Significand is normalized to start with 1.0 ($\pm1.bbbb...b\times 2^E$)
- So we only store digits to the right of the radix ($.bbbb...b)$
$E$: Exponent
- $\text{Biased exponent} = E + \text{bias}$
- $\text{bias} = 2^{k-1}-1$, where $k$ is the number of bits of the “biased exponent” part
- e.g. $k=8$, bias exponent has range 0~255, $E$ therefore has -127~128
- $\therefore$ Bias exponent turn $E$ unsigned → easier comparison
$\pm(S)$: Sign (1 bit)
IEEE Standards
- Single Precision bias: 127
- Double Precision bias: 1023


Encodings
