Sets

Name Set notation Logic operator Description
Subset $S\subseteq T$ $\forall x(x\in S\to x\in T)$ TRUE if every element of $S$ is in $T$
Superset $S\supseteq T$ $\forall x(x\in T\to x\in S)$ TRUE if every element of $T$ is in $S$
Set equality $S = T$ $\forall x(x\in S\leftrightarrow x\in T)$ -
Union $S\cup T$ $\{x x\in S \vee x\in T\}$
Intersection $S\cap T$ $\{x x\in S \wedge x\in T\}$
Difference $S-T$ $\{x x\in S \vee x\notin T\}$

Sequence

Sequence properties

Matrices

$$ A=\begin{bmatrix} a_{1,1} &a_{1,2} &\cdots &a_{1,n}\\ a_{2,1} &a_{2,2} &\cdots &a_{2,n} \\ \vdots &\vdots & &\vdots \\ a_{m,1}&a_{m,2} &\cdots & a_{m,n}\end{bmatrix} $$

<aside> 💡 Exam tips:

Write like this for procedure points

截屏2023-09-28 17.17.20.png

</aside>

Function

Types of function

Relations